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Abstract 
Convergent-beam electron diffraction is applied to 
measure the temperature factors of the intermetallic 
phase NiA1 with high accuracy. The patterns are recorded 
in an energy-filtering transmission electron microscope at 
zero energy loss using a slow-scan CCD camera. The 
specimens were tilted in systematic row orientation. In 
this new approach, data are extracted from the bright- 
field disc as well as from several high-order dark-field 
discs along line scans. The temperature factors are 
determined by fitting Bloch-wave simulations to the 
intensity profiles. The harmonic approximation for 
temperature factors is used. For B2-phase NiA1, mean 
thermal displacements u(Ni) - 5.5 + 0.1 and u(A1) = 
5.7 4- 0.1 pm are obtained at 100 K. Avery detailed error 
analysis is given, and stochastic and systematic errors are 
discussed and quantified. 

1. Introduction 
Convergent-beam electron diffraction (CBED) nowadays 
is appreciated as a very valuable tool for quantitatively 
determining crystal data such as lattice constants, atomic 
positions and structure factors. Here we report a new 
application, the high-precision determination of tem- 
perature factors (TFs). 

Temperature factors, also referred to as Debye-Waller 
factors, play a central role in the simulation of diffraction 
patterns and high-resolution images. They incorporate 
the influence of the thermal motion of the atoms by a 
smearing out of the real potential and as an absorption 
potential. Comparison with experimental high-precision 
TF data also provides a comprehensive test for molecular 
dynamics simulations (Gumbsch & Finnis, 1996). 

The most challenging enterprise in CBED is the 
accurate measurement of structure factors from which the 
bond charge density can be derived. However, for the 
conversion of the measured crystal potentials to electron 
densities, a very precise knowledge of the TFs is indis- 
pensable. 

TFs are usually found in X-ray literature since they are 
determined along with the crystal structure data on a 
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routine basis. For NiA1, TFs have been measured by 
Cooper (1963), Hughes, Lautenschlager, Cohen & 
Brittain (1971), Georgopoulos & Cohen (1977) and 
Menon & Fox (1996). Unfortunately, these data were 
determined at room temperature, whereas quantitative 
CBED is preferably performed at liquid-nitrogen tem- 
perature. This helps to keep thermal diffuse scattering at 
a minimum level and also to reduce specimen con- 
tamination. 

Inspecting the data, we observed that the results show 
a remarkable spread of about 20%. This is probably due 
to the limited accuracy of powder experiments (Cooper, 
1963) or the use of low-order reflections in single-crystal 
measurements (Hughes, Lautenschlager, Cohen & 
Brittain, 1971). Very precise powder data have been 
obtained by Menon & Fox (1996) using an improved 
extinction-correction scheme. Their results are in close 
agreement with the single-crystal measurements of 
Georgopoulos & Cohen (1977). These workers employed 
more than 100 high-order reflections and therefore 
obtained highly reliable results. However, single-crystal 
experiments require relatively large specimens and are 
thus prone to errors due to crystal imperfections. It is the 
intrinsic advantage of CBED that probe diameters of less 
than 20 nm are easily realized by working with a focused 
beam, and the specimen area under observation can be 
checked for imperfections by switching to the imaging 
mode. 

From the quantitative evaluation of CBED patterns of 
perfect crystals, very detailed information such as atomic 
positions, charge density, temperature factors and lattice 
constants can be derived (Spence & Zuo, 1992). Tech- 
niques to measure structure factors have been reported by 
Bird & Saunders (1992) for zone-axis orientation and 
Zuo & Spence (1991) in systematic row orientation. 
Recently, Holmestad, Zuo, Spence, Hoier & Horita 
(1995) studied the influence of Mn doping on the charge 
density of TiA1. Swaminathan, Jones, Maher, Johnson & 
Fraser (1997) analysed the effects of TFs and composi- 
tion on the 200 structure factor in TiA1. 

For NiA1, first TF measurements with CBED have 
been performed by Fox (1983) using the critical-voltage 
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(CV) technique. This method is extremely sensitive to the 
absolute value of low-order structure factors. Therefore, 
provided the zero-temperature structure factors are 
known, the TFs can be derived with high accuracy. 
Unfommately, only the low-order structure factors can be 
investigated. Thus, the influence of bonding effects 
cannot properly be disentangled from the TF effects. In a 
more advanced approach, Matsumara, Tomokiyo & Oki 
(1989) combined the CV with the intersecting Kikruchi - 
line (IKL) technique for f.c.c, metals. In favourable cases, 
the errors can significantly be reduced. The problem of 
the bonding influence, however, cannot be overcome. 

More recent experiments are based on the application 
of energy filters, which makes it possible to remove most 
of the inelastically scattered electrons. Therefore, patterns 
are solely recorded with electrons that have undergone 
elastic or thermal diffuse scattering. Only these patterns 
can be simulated with high accuracy, allowing the 
extraction of quantitative data. 

Burgess et al. (1994) used the zone-axis technique 
(Bird & Saunders, 1992) to fit a set of low-order structure 
factors of Ge, including 400 and 113 (which they 
assumed to be very close to the free-atom values) using 
various TFs. They concluded that from the fit which 
reproduces the free-atom values they can deduce the 
correct TE The sensitivity, however, seems to be low. 

Lehmpfuhl, Krahl & Uchida (1995) simulated the 
intensity distribution of large-angle CBED patterns for 
three different zone axes of Si. They compared the 
dynamical shift of various high-order lines with experi- 
ments to deduce the TFs. This technique works with a 
simple by-eye comparison of simulation and experiment, 
which is a major advantage compared with techniques 
which require extensive computing. 

In a different approach, Holmestad, Weickenmeier, 
Zuo & Horita (1993) tried to determine TFs of TiA1 from 
the intensity distribution in CBED patterns. Intensities of 
high-order reflections at exact Bragg position were 
extracted and the TFs determined by means of the Wilson 
plot. As discussed in their paper, the purely kinematical 
approach turned out to be not accurate enough. This has 
also been observed and addressed by Preston, Burgess, 
Pickup & Humphreys (1993) who derived TFs for silicon 
at room temperature from unfiltered and filtered large- 
angle convergent-beam (LACBED) patterns with the 
same technique. 

In the next step, Holmestad, Weickenmeier, Zuo & 
Horita (1993) used the Bethe potential corrections. They 
obtained a significant improvement of the Wilson-plot 
results. This technique, however only works in near-two- 
beam-like beam orientations and for thin specimens. It 
also only yields an average TF, since different atomic 
species as well as non-equivalent crystallographic sites 
cannot be accounted for. 

The most elaborate approach is to extract complete 
rocking curves of various high-order reflections from one 
pattern. These line scans typically consist of 1000 data 

points. For TiA1, TFs have been determined by 
Holmestad, Weickenmeier, Zuo, Spence & Horita (1993) 
by manually adjusting simulations to the experimental 
data. Zuo, Holmestad, Tomokiyo & Yase (1995) have 
measured a set of low- and medium-order structure fac- 
tors of MgO. They plotted the logarithmic ratio of the 
measured and zero-temperature free-atom structure fac- 
tors as a function of the squared reciprocal-lattice vector. 
From the slope of this plot, they derived an average TE 
They found it impossible to derive individual TFs for Mg 
and O because of bonding effects on the reference 
structure factors. 

In our approach, we have implemented a fully auto- 
mated fitting procedure which allows the determination 
of the TFs, specimen thickness and incident-beam 
direction on an absolute scale with high precision from 
high-order reflections. Here we report our experiments on 
the intermetallic phase NiA1. We primarily focus on the 
technique but will also discuss error sources and princi- 
pal limitations. 

2. Temperature factors 

The intensity distribution in electron diffraction pattems 
depends on temperature through the structure factors 
(Fourier coefficients of the crystal potential) as well as 
through thermal diffuse scattering, which causes a 
weakening of the Bragg reflections. 

In general, the structure factors are given by (Willis & 
Pryor, 1975) 

Ug = (l/g2) ~2 fj(g)Tj(g) exp[igRj]. (1) 
J 

Here, t ,  fj, Tj and R/denote the volume of the unit cell, 
the Fourier transform of the atomic potential, the TF and 
the position vector of atom j, respectively. 

For temperature well below the Debye temperature, the 
harmonic approximation holds. Then we may write 

; T/(g) = exp[-½ ((guj)2)], (2) 

u/being the instantaneous thermal displacement of atomj 
and ()  denoting the average. Depending on the site 
symmetry, (2) can be simplified, e.g. in the case of NiA1 

• we have cubic site symmetry for both atomic species and 
(2) reduces to 

Tj(g) = exp[- ½ <uZ)g21 . (3) 

Therefore, it is sufficient to determine one parameter per 
atom, the mean square thermal displacement (u2). 

The Fourier coefficients of the atomic potential in (1) 
are approximated by those calculated for spherical neu- 
tral atoms (Rez, Rez & Grant, 1994). This is only an 
approximation since bonding effects are completely 
ignored. However, for high-angle reflections, the influ- 
ence of bonding on the structure factors is small com- 
pared with the temperature dependence. 



W. N(QCHTER, A. L. WEICKENMEIER AND J. MAYER 149 

It has been shown by Yoshioka (1957) that in a first- 
order approximation an absorption potential can account 
for the removal of electrons from the Bragg reflections by 
inelastic scattering processes. For thermal diffuse scat- 
tering, the corresponding absorption potential has been 
derived by Hall & Hirsch (1965). Employing the Einstein 
approximation, they obtained 

U~ -- - (1 /kV)  ~ exp[igRj] f d 2q fj(q)fj(q - g) 
J 

x {exp[ - 1  (u~)g a] - exp[ - 1  (u})q 2] 

x exp[-  ½ (u})(q - g)2]}, (4) 

which also only depends on the mean squared thermal 
displacements (u2). 

3. Computation of CBED patterns 

For the simulation of CBED patterns, the Schr6dinger 
equation is most efficiently solved in Fourier space. The 
wave function of the fast electron is then given by 

qJ(r) = ~ e(J)c~)exp[i(k (j) + g)r]. (5) 
Jg 

The excitation coefficients e (jl are chosen to satisfy the 
boundary conditions, the wave vectors k (j) and coeffi- 
cients c 2~ are found by solving the dispersion equation of 
the dynamical theory 

[(k(j) + g)2 _ k2]c~) = ~ L/ghCh 0) (6). 
h 

for each beam direction. The potential matrix L/gh is set 
up from the structure factors and the absorption 

U,h = Ug_ h + iUg_ h (7) 

and thus contains the temperature dependence of the 
CBED pattern. Since many computer codes already exist 
for the solution of (6), we only summarize briefly the 
most important details of our calculations. 

Only a limited number of reflections g can be included 
in the calculations. To ensure the most efficient compu- 
tation, we follow the automated beam-selection scheme 
suggested by Zuo & Weickenmeier (1995). Only those 
reflections with structure factor larger than a given 
minimum are considered. Depending on excitation error 
and structure factor, beams are selected for diagonaliza- 
tion or treated as perturbation by means of the Bethe 
correction. A very detailed discussion of how con- 
vergence of the computation is achieved and controlled 
was given by Zuo & Weickenmeier (1995). 

A complete set of Fourier transformed atomic poten- 
tials for neutral atoms fs(q) has been computed by Rez, 
Rez & Grant (1994) using a self-consistent Dirac-Fock- 
Slater code. These data are very close to the most com- 
monly used Doyle & Turner (1968) tables, which repre- 
sent the output of various programs. 

For the absorptive part of the potential, only phonon 
scattering is considered. Actual values of Ug_~ are 
computed with the FSCATT program (Weickenmeier & 
Kohl, 1991), which is based on the analytical solution of 
(4). 

The solution of (6) involves the determination of 
eigenvalues and eigenvectors of a complex general 
matrix. This is done with a double-precision routine 
taken from the EISPACK package to achieve numerical 
stability. 

4. Experiment 

The material we investigated is the ordered intermetallic 
phase NiA1-B2, which is of technical interest as a high- 
performance material at elevated temperatures. The 
structure of NiA1 is CsC1 type, the space group is Pm3m 
(No. 227). The lattice constant of 2.882/~ at 110 K was 
calculated using the thermal-expansion coefficient mea- 
sured by Sandakova, Sandakov, Kalishevich & Gel'd 
(1971). Since this value allowed the positions of higher- 
order Laue-zone (HOLZ) lines to be fitted with sufficient 
accuracy, no attempt has been made to measure the lattice 
constant independently by CBED techniques. 

The NiA1 single crystals were produced in the Max- 
Planck-Institut for Metallforschung by Essmann, Henes, 
Holzwarth, Klopfer & Biichler (1997). Ingots were pro- 
duced from A1 and Ni of 99.998% purity. To compensate 
for non-stoichiometric evaporation of A1, a surplus of 
0.1% A1 was added to the nominal composition. The 
melting and mixing is performed in an alumina crucible 
by induction heating in a high-purity argon atmosphere. 
The melt is then cast into copper moulds of 60 mm 
length and 20 man diameter. Then, the ingots are cleaned 
in a mixture of 100 ml acetic acid, 60 ml nitric acid, 
20 ml sulfuric acid and 20 ml phosphoric acid at about 
363 K. Finally, they were annealed for 6 h at 923 K, 2.5 h 
at 1023 K, and 42 h at 773 K. Chemical composition 
(stoichiometry) was checked by wet chemical analysis 
and found to be 50:50. 

From the NiA1 rods, slices of thickness 5 mm were cut 
by spark erosion. After mechanical thinning to 100 gm, 
specimens of 3 mm diameter were punched out and 
electropolished in a 50:1 mixture of ethanol and per- 
chloric acid at 243 K until electron transparency was 
reached. 

The CBED patterns were recorded in the energy-ill- 
tering Zeiss EM912 Omega transmission electron 
microscope at an acceleration voltage of 120 kV. Patterns 
were filtered at zero energy loss with an energy window 
of 5-10 eV In order to reduce contamination and thermal 
diffuse scattering, the specimens were cooled down to 
liquid-nitrogen temperature. The patterns were acquired 
with a Gatan model 679 slow-scan CCD camera 
equipped with an anti-reflection YAG scintillator pro- 
viding 1024 x 1024 pixels. The modulation transfer 
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function (MTF) of the camera has been measured 
(Weickenmeier, Niichter & Mayer, 1995) and was 
deconvoluted from the pattems. 

Preliminary experiments showed that maximum sen- 
sitivity to temperature factors is obtained if both the 
intensity in the bright-field disc as well as in at least three 
high-order dark-field discs is recorded. In the experi- 
ments, we tilted the specimen in a systematic row 
orientation and used a convergence angle of about twice 
to three times the Bragg angle, in which case the pattem 
shows three to four adjacent g discs with each reflection g 
in Bragg position. To provide sufficient resolution (since 
the number of pixels is limited), we always take two 
frames, one for the bright-field and one for the dark-field 
discs, respectively, using the post-specimen deflection 
coils to shift the diffraction pattern across the camera. 

5. Data refinement 

The intensity distribution in a CBED pattem is deter- 
mined by incident-beam direction, specimen thickness 
and the interaction potential of the fast electron with the 
crystal. Once all these parameters are known, the com- 
putation of the pattern is straightforward. In the evalua- 
tion of experimental patterns, we face the reverse 
problem: the experimental pattern is known and the 
parameters are to be found. 

In the refinement procedure, the CBED patterns are 
computed based on a given set of parameters. The pat- 
terns are then compared pixel by pixel with experimental 
data, employing an objective measure of the difference 
(e.g. a X 2 test). On an iterative basis, the input parameters 
are varied in order to obtain the best match between 
simulation and experiment. The parameters of interest as 
well as an error estimate are taken from the best match. In 
this section, we want to explain the details of the 
matching process. 

5.1. Fit  parame te r s  

The parameters required to compute a CBED pattem 
can be divided into two groups: (i) the geometrical 
parameters including the high voltage (defining the beam 
orientation and magnification of the patterns) and (ii) the 
specimen parameters (thickness and TFs). 

To be able to compare the experiment and simulation, 
we have to associate each pixel in each disc of the 
experimental pattern with a beam direction. To do so, we 
determine the coordinates of a reference point and the 
two components of a g vector. Also, if we take the bright- 
field disc and the dark-field discs in two subsequent 
frames, we have to determine the shift vector. Therefore, 
we need to find six geometrical parameters. 

Before putting these parameters into the pattern- 
matching algorithm, we usually perform a pre-determi- 
nation. Firstly, a quick and sometimes rather rough esti- 

mate for the reference point can be obtained on the basis 
of pure kinematical calculations, which subsequently can 
be refined by simple eye inspection using a full dy- 
namical simulation. An estimate of a reciprocal-lattice 
vector g is readily found by simply measuring the dis- 
tance between the centres of the diffraction discs in the 
experimental pattern. 

The interaction of the specimen with the fast electron 
is governed by the potential matrix Ugh, which (since 
atomic positions and atomic potential are fixed) only 
depends on the TFs of Ni and A1, respectively. Thus, we 
have to refine two more parameters. Therefore, in total, 
eight parameters are to be found. 

Moreover, the intensity distribution also depends on 
the specimen thickness. However, once the electron wave 
function has been determined (i.e. the eigenvalue prob- 
lem has been solved), it only costs a little extra time to 
compute the intensity for a set of, say, a hundred thick- 
nesses in steps of 5 A. Therefore, the thickness that 
yields the best match can readily be found without 
treating it as a fit parameter. 

The high voltage is determined from an independent 
measurement. Before and alter taking the CBED pattems 
of NiA1, we insert a standard Si specimen. CBED pat- 
terns are taken in the (331) zone-axis orientation. By 
comparison with a series of dynamical simulations for 
various high voltages, the high voltage can readily be 
determined with the required accuracy of 100 V 

5.2. X e test 

At each stage of the iterative parameter adjustment, the 
simulated and experimental patterns need to be com- 
pared. In order to quantify the difference objectively, a 
mathematical measure is employed. The measure pre- 
ferred by most groups working on quantitative CBED is 
the X 2 test, since the Poisson noise of the electrons as 
well as the detector noise are inherently considered. X 2 is 
most commonly defined as 

N 
X 2 = [ 1 ~ ( N - f -  1)]y~[(I[ xp -c,/~. ~°)2/a~]; (8) 

i=1 

however, to also take account of the background, we use 
a slight modification: 

N 
X 2 = [1/(N - f  - 1)1 ~ [(I7 ×p - e,/~. e° - B;) 2/a,21. (9) 

i=1 

Here, N and f denote the number of pixels to be com- 
pared and the number of parameters that are adjusted, 
respectively. ~xp is the experimental, ,/~. eo the simulated 
intensity and o'; the noise in pixel i. Since the simulated 
intensity is normalized to unity, we need a scaling con- 
stant c. The background in each pixel is denoted by Bi. 
The latter parameters are not part of the fit procedure but 
determined as follows: for each set of simulated inten- 
sifies ,/~. ~o, the values of c and Bi (positive numbers) that 
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minimize X 2 a re  calculated exploiting analytical for- 
mulas. Hereby, the background level Bi is constant within 
each disc, but for different discs different levels are 
allowed. Alternatively, the background values can also be 
estimated from the CBED pattern and kept fixed during 
the refinement. 

The noise in each pixel or; is due to the Poisson sta- 
tistics of the incoming electrons combined with the noise 
amplification of the detection system (i.e. the CCD 
camera). We analysed a set of noise images, acquired 
with uniform illumination and different exposure times 
(Weickenmeier, Nfichter & Mayer, 1995). We found that 
after deconvolution the noise as a function of the inten- 
sity can be approximated by 

a 2 = (1.6 + 2.26 x 10 -5 x iexp)/exp. (10) 

In order to shed some more light on the X 2 test, we 
assume that the experimental signal is given by 

Iexp - clpe° + Bi + ai + Ai, (11) 

where a is the noise and A a systematic error. Then, for 
the typical case of N >> f we have to a very good 
approximation 

N 
X 2 -- 1 + ( l /N)  ~ A21a 2. (12) 

i=1 

Thus, a X 2 value of 1 means a perfect match and the X 2 
test is normalized. In the presence of systematic errors, 
however, the X a value depends on the count rate, since 
the fraction A2/a  2 scales linearly with the intensity. It is 
difficult to judge the goodness of fit from the numerical 
X z value and to compare the reliability of various 
experiments. 

There is one more drawback with the X 2 test. We may 
understand the factor 1 /a  ] as a weighting factor. Since 
low-intensity pixels show the largest errors due to dark- 
current subtraction (CCD camera) and thermal diffuse 
background, there is too much weight on these pixels, 
compared with the high-intensity pixels. However, when 
switching from (8) to (9), the relative influence of low- 
intensity pixels is reduced. 

The X ~ test also provides a possibility for an error 
estimation. From a formal point of view, X 2 depends on a 
set of parameters ai (i.e. beam-orientation parameters, 
TFs). Then, the error in ai can be estimated as (Wolberg, 
1967) 

Sa i = (x2) l /2(Ci i )  1/2, (13) 

where C is the inverse of the ot matrix given by 

Otk! = 10Zx2/OakOat. (14) 

We want to stress the point that this error estimate is 
solely based on the statistical nature of the signal. It does 
not account for any systematic errors and thus will tend 
to underestimate the real error. 

5.3. Minimization strategies 

The determination of a set of physical parameters from 
a given experiment is reformulated as a multidimensional 
nonlinear minimization problem: find the parameter set 
that minimizes the X 2 function. As usual in nonlinear 
multiparameter fitting problems, more than one minimum 
exists. This has been observed in previous studies 
(Deininger, Necker & Mayer, 1994) as well as in our 
present investigations. The physical parameters we are 
interested in are those that correspond to the absolute 
minimum. To deal with this problem, two aspects have to 
be considered. Firstly, the actual shape of the X z land- 
scape will depend on the intensities 1 exp we extract from 
the experimental pattern. Secondly, it is worthwhile 
applying some care when selecting from the variety of 
minimization algorithms. 

A CBED pattern captured with a CCD camera consists 
of 1024 x 1024 pixels and typically shows three different 
discs with a diameter of roughly 300 pixels. Thus we 
have about 200 000 data points to choose from in the 
dark-field discs and bright-field disc. Unfortunately, even 
with modern high-speed computers, we have to limit the 
number of pixels put into the X 2 t e s t  to about 1000. The 
common strategy therefore is to extract a simple line scan 
across the discs in a systematic row. It tumed out that, in 
particular for thick specimens, this choice of data points 
generates multiple minima in t h e  X 2 function (Deininger, 
Necker & Mayer, 1994). From our experience, the fol- 
lowing strategy is favourable in order to generate a 
smooth X 2 landscape. We use a specimen thickness so 
that the rocking-curve fringes are resolved by the camera 
(while displaying about three discs), which facilitates the 
thickness determination. We try to fix the beam direction 
by using at least two scans along the maximum intensity 
(along the Bragg position) and another two across the 
discs to prevent the algorithm from rotating and shifting 
the pattern. Thus, less local minima exist, in which 
wrong values of the TFs are partially compensated by a 
wrong beam direction and specimen thickness. An 
example for our line-scan placement strategy can be 
found in the next section. 

The presence of several minima makes it tempting to 
tackle the problem with a global optimizer, such as 
simulated annealing (Ingber, 1989) or related algorithms. 
However, after extensive testing, we found that, on the 
one hand, these strategies are extremely inefficient in the 
vicinity of minima and, on the other hand, they do not 
locate the absolute minimum with sufficient reliability in 
acceptable computing time. Thus, we prefer a non-gra- 
dient-based one-dimensional minimizer, which is applied 
to each parameter in turn. The cycle is repeated until the 
decrease in X 2 is smaller than a tolerance. It typically 
takes 5-10 cycles to achieve convergence. While this 
technique might not be the most efficient one, it com- 
bines acceptable efficiency with general stability. The 
multiple-minimum problem is solved by restarting the 
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program several times, each time starting from different 
values randomly chosen from a given search interval. 

6. Results 

A schematic drawing of a typical experiment is given on 
the left side of Fig. 1. Typically, three diffraction discs 
(here four discs 500-800) can be projected on the CCD 
camera. From those discs, line scans are extracted. As 
explained in §5.3, the choice of the line-scan placement 
has an influence on the efficiency of the refinement 
process. In order to illustrate our strategy of placing line 
scans, they are marked in Fig. 1 in the recorded pattems. 
The corresponding intensity data are plotted in Fig. 2, 
along with the best fit. 

With scans S1, $2, $4, $5, $6, the incident-beam 
direction along the systematic row and the camera length 
are fixed, while with $3 the beam direction with respect 
to the direction perpendicular to the systematic row is 
adjusted. Scans $2 and $4 prevent the algorithm from 
rotating the pattern. The relative displacement between 

the bright-field and the dark-field pattern is determined 
using $7. The geometrical parameters can be found very 
quickly and without local minima using this strategy. Of 
course, scans S1-$6 monitor the intensity of the reflec- 
tions (S1 of the direct beam) and are used to adjust the 
temperature factors. Another example of our line-scan 
placement strategy can be found in Niichter, Weicken- 
meier & Mayer (1995). 

At the bottom of Fig. 2, the contribution 
(i/exp ci]heo - B i ) / t 7  i of the individual pixel i to )¢2 is 
plotted. In favourable cases where a good fit has been 
obtained, this curve does not show systematic variations 
but only a random fluctuation. Moreover, it becomes 
clear why the X 2 function is an excellent choice as an 
objective measure of the difference between experiment 
and simulation. On the one hand, we notice that 
according to the larger absolute value of tr for high- 
intensity signals larger absolute deviations of (/theo from 
(iexP are permitted. On the other hand, since we subtract a 
background signal, the X 2 test obviously is not too sen- 
sitive to low-signal pixels. 

I 

looo) 

) 

(8oo) 

(a) (b) 

Fig. 1. (a) A schematic drawing of  a typical experiment. The dashed squares show the area covered by the CCD camera. (b) The recorded patterns. 
Inside these patterns, the positions of  the line scans are indicated. The corresponding intensities are given in Fig. 2, along with the best fit. 
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Various measurements have been performed using 
different specimen areas as well as different specimens in 
order to avoid specimen-dependent systematic errors 
(such as deviation from stoichiometry). However, all 
specimens are prepared with a (110) surface normal to 
facilitate tilting the same specimen in the (100) and (110) 
systematic row orientation, respectively. The results of 
the seven evaluations that led to a X 2 value lower than 5 
are given in Table 1, five other experiments were dis- 
carded owing to larger X 2 values. For each individual 
experiment, the statistical error as defined in (13) is given 
in brackets. In the last but one row, the average values 
and the estimated errors are given. The final results are  
u(Ni) = 5.5 4- 0.1 and u(Al) = 5.7 4- 0.1 pm at T = 
110 K. The estimated errors are computed as a/N 1/2. 
Here N -- 7 and o" is the standard variation of the seven 
results, defined as the square root of the variance 

N 

cr 2 ----[1/(N - 1)] ~ ( x , -  (x)) 2. 
i=1 

The variance is given in the last row. The variance can be 
used as a measure for the combined systematic and sto- 
chastic error for a single experiment. As expected, the 

standard variation exceeds the statistical errors of most of 
the individual experiments, owing to systematic errors. 
These will be "discussed in detail in the next section. 

7. Error discussion 

In Table 1, two different errors are given. The first one (in 
brackets after the individual results) is evaluated using 
(13) and is based only on the stochastic nature of electron 
emission. If we were to repeat the experiment under 
identical conditions N times, then in the limit of N --+ oo 
the average values of the two different measured tem- 
perature factors would converge to the true values for that 
particular experimental set-up (which may still be influ- 
enced by all systematic errors there might be) and the 
standard deviation would be close to the uncertainty we 
predicted on the grounds of the well known Poisson 
statistics. 

Repeating the experiment under identical conditions 
would mean for example taking a series of patterns 
without changing anything. So for all patterns systematic 
errors are identical. To estimate the error bars for the 
temperature factors including the systematic errors, we 
would have to locate all possible error sources, estimate 
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Table 1. Results for the thermal displacements u at T = l l O K 

In each row, the error based on the stochastic nature of electron emission is given in brackets. In the last but one row, we give the average value and 
the estimated error of the average; in the last row, the standard deviation of the set. For experiment no. 6, the (000) disc could not be evaluated due to 
a problem with the data acquisition. 

No. X 2 u(Ni) (pm) u(A1) (pm) Reflections considered Thickess (nm) 
I 3.9 5.0 (2) 5.5 (5) (440)-(770), (000) 47.8 
2 3.7 5.2 (1) 5.5 (1) (500)-(700), (000) 111.6 
3 3.3 5.3 (1) 5.7 (2) (440)-(660), (000) 50.1 
4 3.5 5.5 (1) 5.4 (2) (440)-(660), (000) 68.8 
5 2.1 5.6 (1) 5.7 (1) (440)-(660), (000) 44.2 
6 4.1 5.8 (1) 5.5 (1) (500)-(800) 167.9 
7 3.6 6.0 (1) 6.2 (1) (500)-(800), (000) 43.9 

5.5 4- 0.1 5.7 + 0.1 Average and estimated error 
0.4 0.3 Standard deviation 

their magnitudes and then try to calculate the influence 
on the temperature factors (for a more detailed discussion 
see e.g. Chapter 4.9 in Wolberg, 1967). However, since 
we can perform many experiments with different settings 
of the microscope, using different samples, zone axes and 
specimen thicknesses, we also sample the statistical dis- 
tribution of all the systematic errors, which are likely to 
vary for different measurements. Therefore, for an infi- 
nite number of experiments, the influence of the sys- 
tematic errors is minimized and the average result will be 
as close to the true result as possible. The remaining 
differences between the observed average results and the 
true values are due to systematic errors that cannot be 
averaged out by that particular kind of experiment (here 
CBED). The magnitude of these errors still has to be 
estimated. 

In terms of  a statistical analysis, the uncertainty in the 
observed average result decreases as cr/N 1/2, where tr is 
the standard deviation. But the observed result might still 
be different from the true result. In the following sec- 
tions, we characterize the most important error sources 
and try to estimate, i f  possible, their order of  magnitude. 

7.1. Specimen temperature 

The specimen is cooled with liquid nitrogen down to a 
temperature of about 110 K. However, the illuminated 
area is heated up as a consequence of the inelastic 
interactions of  the fast electrons with the specimen. A 
rather simple formula, allowing estimation of the rise in 
temperature, can for example be found in Reimer (1984): 

AT = (jp/Ze)O(AQ/Ax)~ln(R/ro).  (15) 

Here, j ,  p, e, ~, r0 and R denote the beam current density, 
specimen density, elementary charge, heat conductivity, 
spot and specimen radius, respectively. The deposited 
energy per unit mass thickness, AQ/Ax ,  can be esti- 
mated using the nonrelativistic Bethe energy-loss for- 
mula (see e.g. Reimer, 1984) 

A Q / A x  = 7.8 x 104(Z/A)(1/E)ln(E/IZ). (16) 

If we insert the atom number Z and mass A in units of  
(1/12)m(12C), the electron energy E and the mean ioni- 
zation energy 1Z = 13.5Z in eV, then we get A Q / A x  
in units eV cm 2 l.tg -1. For our experiment, we have 
,k(NiA1) -- 80 J (s m K) -1, ro = 10 nm and R = 3 mm. 
For the biatomic crystal NiAl, we replace the term 

p( AQ/  Ax) :=~ [p( AQ/  Ax)]N i + [p(AQ/ Ax)]A1. 

Inserting the electron e n e r ~  of 120 keV and the beam 
current density of  6 A cm - ' ,  we obtain AT = 0.0006 K. 
Therefore, the beam heating effect is certainly negligible. 

On the other hand, there are uncertainties in the tem- 
perature measurement. The specimen temperature is 
measured as the temperature difference between the tip of  
the specimen holder (which according to the manufac- 
turer's manual might be about 2 K lower than the real 
specimen temperature) and the microscope room. From 
this difference, a fixed value, the assumed laboratory 
temperature, is subtracted. Therefore, i f  the assumed 
room temperature differs from the real one (this deviation 
might be of order -t-5 K), we have a systematic error of  
about 4-7 K in all of  our experiments. Moreover, the 
room temperature, although controlled by the air-con- 
ditioning system, varies within about +1 K. Also, the 
temperature the specimen reaches varies in the range 108 
to 114 K, depending mainly on the specimen-holder 
evacuation. 

So, in summary, we have a systematic deviation of 
about AT -- q-7 K plus a random scatter of  about 8T = 
+5 K. The scatter in temperature can be converted to a 
scatter in the temperature factors employing the calcu- 
lations of Gumbsch & Finnis (1996), who give the ui as a 
function of temperature. Assuming an average tempera- 
ture of 110 K, a variation of 5 K leads to a Au of 0.05 pm 
for both Ni and A1. 

According to the discussion preceding this paragraph, 
the average rise of ATis  a systematic error, which will be 
present in all experiments. It cannot be measured but has 
to be estimated. On the other hand, the variation ~Tofthe 
temperature may be treated as a statistical variable. 
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7.2. Stoichiometry 

The result of the wet-chemical analysis is that our 
specimen is stoichiometric 50-50 NiA1. The uncertainty 
associated with that kind of analysis is about 0.3%. In the 
case of Ni-rich NiA1, we get Ni antisite atoms, in the 
other case we have Ni vacancies. The structure factors we 
use for the simulation are based on a site occupancy of 1 
for each site. In the case of 49.7-50.3 NiA1, the tree Ni- 
site occupancy would be 49.7/50.3 -- 0.99. Since the 
true structure factor is smaller than the supposed one, the 
refinement program will adjust the temperature factors to 
compensate for the difference, causing inaccurate results. 

A worst case estimate of the influence of this effect can 
be found as follows: For the situation described above, 
the true structure factors are given by 

Ug = (1/~2) {OtfN i exp[-½ (U2)Nig 2] 

4-fro exp[-½ {U2)AIg2]} (17) 

with oe = 0.99. The simulation will suppose ot = 1. In the 
worst case, this will be compensated by only modifying 
the Ni temperature factor, resulting in AUNi = 0.1 pm in 
the case of the (500) structure factor. This is of the order 
of the observed standard deviation. However, at least 
three reflections are used in each refinement process, 
therefore it is not possible to totally compensate for a 
change in stoichiometry. The simulation will end up with 
a higher X 2 value and a smaller deviation from the true 
temperature factor than estimated here. Also, (500) is the 
lowest indexed reflection used for the fits. And, further- 
more, both temperature factors will be affected, leading 
to a smaller deviation for each one. This method for the 
error estimation seems very rough, however, the order of 
magnitude of the error becomes clear. 

7.3. Surface oxidation 

The final step in the specimen-preparation process is 
the electropolishing. Once the specimen is taken out of 
the polishing liquid, the oxidation starts, resulting in an 
amorphous oxide layer on the specimen surface. The 
layer thickness has been measured employing the energy- 
loss spectrum of the specimen, using a technique devel- 
oped by Mayer, Eigenthaler, Plitzko & Dettenwanger 
(1997). The first sample was examined immediately after 
the preparation process and no oxide was detected. For a 
different sample, which was stored for about 6 months at 
room conditions, the total oxide layer was about 4 nm 
thickness including both top and bottom surfaces. 

In a first approximation, an amorphous layer will 
slightly modify the illumination. It is known that for 
parallel illumination the diffraction pattern of an amor- 
phous specimen consists of a ring system due to the 
remaining short-range order. So, in a simple picture, each 
beam in the incoming convergent beam is modified into a 
slightly weaker direct beam which is surrounded by a 
system of concentric cones. These arguments might also 
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be applied to the exit surface. Accordingly, from the 
superposition of all the cones, we expect a more or less 
uniform background in the CBED pattern. 

As explained in §5.2, the fit program accounts for a 
uniform background. Since no new features are created 
in the CBED pattern, we do not expect the amorphous 
layer to be a serious problem. However, since electrons 
are scattered into the background, we count less electrons 
in the reflections. This will lead to a slight overestimation 
of the temperature factors. The corresponding error is 
hard to quantify. On the other hand, the thickness of the 
amorphous oxide layer is smaller than 2 nm (top and 
bottom surfaces), which is still very small compared with 
a total specimen thickness of about 40-100 nm. 

7.4. Lattice strain 

It is one of the major advantages of the electron 
microscope that it offers both imaging and diffraction 
modes. In the imaging mode, we may check the quality 
of the specimen area under investigation and look for an 
appropriate region. For NiA1, it is almost impossible to 
find large areas without lattice distortions caused, for 
example, by dislocations. Nevertheless, the focused beam 
used in the CBED technique allows a region that appears 
to be perfect to be selected. However, even far away from 
a dislocation, core strain might be present and thus a 
local variation of the lattice parameters. 

In order to estimate the influence of the lattice strain on 
the temperature factors, we have to discuss the influence 
on the structure factors. These depend on the volume of 
the unit cell as well as on the length of the reciprocal- 
lattice vectors g. For high-angle scattering, the atomic 
form factor f (g)  is roughly proportional to g-2. 
According to (1), the structure factors of a cubic system 
are then proportional to 1/a. Therefore, a 1% change of 
the lattice constant a will change each structure factor 
also by 1%. 

To estimate this influence, we have to slightly modify 
(17). While the 'true' structure factor is given by 

Ug = (or/f2){fN i exp[-- ½ (U2)nig 2] -F-fA , exp[--½ (U2)A~g2]} 

(18) 

with ot -- 0.995 (for a 0.5% increase of a, which indeed 
would be a rather large change), the program assumes 
o t -  1.0 and tries to compensate this by modifying the 
temperature factors. In this case, we would obtain an 
error Au/u smaller than 0.01, for both Ni and A1. 
Therefore, this error is negligible. 

7.5. Microscope aberrations 

As a result of the aberrations of the imaging energy 
filter as well as of the objective lens, we have two major 
effects on the CBED patterns. These are aberrations that 
distort the geometry of the pattern and those that affect 
the intensity. 
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The most important geometrical distortion is the 
anisotropic magnification of the CBED pattern, which, in 
our microscope, is of the order of 1%. As a consequence, 
the positions of the deficiency lines of higher-order Laue- 
zone reflections in the (000) disc are slightly modified 
and some accuracy in determining the exact beam 
orientation is lost. On the one hand, we can take care of 
this problem by simply fitting the anisotropic magnifi- 
cation. On the other hand, we found that for temperature- 
factor determination (but not for structure-factor deter- 
mination) the accuracy is sufficient, even without taking 
the anisotropy into account. Therefore, geometrical dis- 
tortions do not decrease the accuracy of the measure- 
ment. 

In addition to the geometrical distortion, we have 
second-order chromatic aberrations of the energy filter. 
Accordingly, in each pixel of the CBED pattern we 
record a slightly different section of the energy spectrum 
as compared with the neighbouring pixel. As a con- 
sequence, only a limited angular range of a diffraction 
pattern can be recorded and used for quantitative eva- 
luation at one time. This is the main reason why we do 
not use imaging plates for CBED at present. 

The typical width of the energy selection window is 5 
to 10 eV. Therefore, we might also record plasmon 
scattered electrons in some regions of the pattern. In a 
rough approximation, the scattering-angle distribution 
caused by plasmon losses is Lorentzian shaped, which 
means peaked in a forward-scattering direction. There- 
fore, if we had a significant plasmon signal in the pattern, 
it would be clearly visible in the minima next to the 
central rocking-curve maxima, where too much intensity 
would be detected. This effect was never observed. It is 
worthwhile mentioning that we always take two frames, 
one with the (000) disc and one with the g discs For both 
frames, the position of the energy-selecting slit is inde- 
pendently adjusted. Therefore, the influence of this error 
is minimized and a systematic deviation of the measured 
intensity from the simulation as described above was 
never found. 

7.6. Point spread function of  the CCD camera 

The CBED patterns are recorded with a slow-scan 
CCD camera. This kind of two-dimensional detector 
usually shows a strong channel mixing (or cross talk) 
over a distance of about 10 pixels. We have tried to 
correct for this effect by deconvolution. However, since 
correcting for the channel mixing increases the noise 
level, we have slightly undercompensated and therefore 
some channel mixing is left in the pattern. As a con- 
sequence, even after the correction process the maxima 
in the dark-field discs are too low and there is too much 
intensity in the corresponding deficiency lines in the 
(000) disc. This results in an overestimation of the tem- 
perature factors. 

In general, the error introduced hereby is hard to 
quantify. In order to get an estimate of the error, we 

determined for one case (which is the experimental 
example given in the previous section) the temperature 
factors with and without correcting for the channel 
mixing. We found that the temperature factors were 
changed by less than 1%. However, the background level 
of the bright-field disc was increased by almost a factor 
of 5, those of the dark-field discs by a factor of 1.5. This 
indicates that the fitted individual backgrounds can 
almost compensate for uncorrected cross-talk effects, 
even in the case of no correction at all. Since the 
remaining cross-talk effects after the corrections are 
almost negligible, the accuracy of the measurement is not 
affected by the channel mixing. 

7.7. Background estimation 

Although the CBED patterns are zero-loss energy ill- 
tered, there is unavoidably a background of electrons that 
have undergone thermal diffuse scattering. The corre- 
sponding intensity underlying the elastic signal in the 
discs is not uniform but structured. Unfortunately, this is 
not possible to simulate, if at all, in acceptable computing 
time. However, in our experiments on NiA1, it could be 
estimated from outside the discs that the ratio of elastic 
intensity:average background intensity:modulation of 
background intensity is of the order 1000:10:1. There- 
fore, as a simple and straightforward strategy, we assume 
constant background intensities Bi, which can vary for 
different discs i. 

We cannot estimate the error of the temperature factors 
introduced by assuming a flat background rather than the 
real modulated one. However, in the case study we 
checked the influence of the available background-fitting 
techniques. First we fitted individual backgrounds as the 
best approximation to the experimental situation. Then 
we fitted one common level for all discs (i.e. Bi = B for 
all i), resulting in a change of the temperature factors, 
-0 .12 pm for Ni and +0.35 pm for A1. If the common 
level is set to zero (no background assumed), the TF of 
Ni changes by - 0 . 2 p m ,  whereas the A1 value is 
unchanged. 

These results prove that there is a significant depen- 
dency of the results on the background. The change of 
the temperature factors as a function of the applied fitting 
technique is comparable with the scatter (standard 
deviation) of the results given in Table 1. It is clear that 
allowing the background level to vary from disc to disc is 
the best approximation currently available. However, the 
influence of the modulation is uncertain. Because it is 
likely to be an important error source, it demands further 
investigation. 

The background signal depends on the beam orienta- 
tion, specimen thickness and, via amorphous surface 
layers, also on the specimen itself. Therefore, we may 
regard the background influence partly as stochastic, 
although for given parameters the background is well 
defined. 
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8. Conclusions 

A new technique has been described to measure tem- 
perature factors with high accuracy by means of con- 
vergent-beam electron diffraction. This technique is 
based on the automated matching of  simulated data to a 
series of  line scans extracted from several high-order 
dark-field discs and from the bright-field disc. 

For the intermetallic phase' NiA1, we found u(Ni) = 
5.5 4- 0.1 and u(A1) = 5.7 =k.. 0.1 pm at l l 0 K .  These 
values are obtained as the average over a set of  seven 
experimental results. Since no other experimental data 
for this temperature have been reported so far, we can 
only compare our results with the theoretical calculations 
of Gumbsch & Finnis (1996). They found from a 
molecular dynamics simulation u(Ni) = 5.1 and u(A1) = 
5.2 pm, which is in close agreement with our results. 

In a detailed discussion, the error sources have been 
identified. The influence of each error source is discussed 
and quantified. The most important errors arise from the 
uncertainty in specimen stoichiometry as well as from the 
background underlying the elastic signal in the diffrac- 
tion discs. Small deviations from the assumed composi- 
tion, which are within the error bar of  the wet chemical 
analysis, may lead to an error in the temperature factor. 
For the given experiment, this error is smaller than 
0.1 pm. For each diffraction disc, an individual flat 
background has been considered as the dominant con- 
tribution. Less-accurate techniques led to a variation in 
the temperature factors of  about 0.2 pm. 

This work was financially supported by the Volks- 
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to R. Henes and U. Essmann for supplying the NiA1 
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